Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 177-189, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258640

RESUMO

Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.


Assuntos
Ferro , Xanthomonas axonopodis , Soja , Virulência , Xanthomonas axonopodis/genética , Peróxido de Hidrogênio
2.
Curr Microbiol ; 81(1): 42, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112972

RESUMO

Filamentous bacteriophage cf infects Xanthomonas axonopodis pv. citri, a serious plant pathogen which causes citrus canker. To understand the immunity regulation of bacteria infected with bacteriophage cf, we applied DNA shuffling to mutate the cf intergenic region. One of the immunity mutants, cf-m3 (NCBI Taxonomy ID: 3050368) expressed a 106-109 fold greater superinfection ability compared with wild type cf. Nine mutations were identified on the cf-m3 phage, four of which were located within the coding region of an open reading frame (ORF165) for a hypothetical repressor, PT, and five located upstream of the PT coding region. A set of phages with mutations to the predicted PT protein or the upstream coding region were generated. All showed similarly low superinfection efficiency to wild type cf and no superinfection ability on cf lysogens. The results indicate that rather than superinfection inhibition, the PT protein and the un-transcribed cis element function individually as positive regulators of cf superinfection immunity. Greater superinfection ability depends on the simultaneous presence of both elements. This work yields further insight into the possible control of citrus canker disease through phages that overcome host superinfection immunity.


Assuntos
Citrus , Superinfecção , Xanthomonas axonopodis , Xanthomonas , Xanthomonas axonopodis/genética , Xanthomonas/genética , Mutação , Citrus/microbiologia , Doenças das Plantas/microbiologia
3.
BMC Microbiol ; 23(1): 284, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798635

RESUMO

BACKGROUND: Secretome analysis is a valuable tool to study host-pathogen protein interactions and to identify new proteins that are important for plant health. Microbial signatures elicit defense responses in plants, and by that, the plant immune system gets triggered prior to pathogen infection. Functional properties of secretory proteins from Xanthomonas axonopodis pv. dieffenbachiae (Xad1) involved in priming plant immunity was evaluated. RESULTS: In this study, the secretome of Xad1 was analyzed under host plant extract-induced conditions, and mass spectroscopic analysis of differentially expressed protein was identified as plant-defense-activating protein viz., flagellin C (FliC). The flagellin and Flg22 peptides both elicited hypersensitive reaction (HR) in non-host tobacco, activated reactive oxygen species (ROS) scavenging enzymes, and increased pathogenesis-related (PR) gene expression viz., NPR1, PR1, and down-regulation of PR2 (ß-1,3-glucanase). Protein docking studies revealed the Flg22 epitope of Xad1, a 22 amino acid peptide region in FliC that recognizes plant receptor FLS2 to initiate downstream defense signaling. CONCLUSION: The flagellin or the Flg22 peptide from Xad1 was efficient in eliciting an HR in tobacco via salicylic acid (SA)-mediated defense signaling that subsequently triggers systemic immune response epigenetically. The insights from this study can be used for the development of bio-based products (small PAMPs) for plant immunity and health.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xanthomonas axonopodis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flagelina/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Peptídeos/metabolismo , Doenças das Plantas/genética
4.
Res Microbiol ; 174(8): 104137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37716444

RESUMO

One of the foremost report of apoptosis-like programmed cell death (PCD) came from Xanthomonas axonopodis pv. glycines (Xag), which displayed rapid post-exponential cell death in PCD inducing media (PIM) but not in a non-inducing media (PNIM). The current study aims to decipher for the first time, the advantages of the existence of PCD in this phytopathogenic microorganism. Analysis of RNA-seq under inducing and non-inducing conditions, revealed differential expression of a number of genes related to key physiology of Xag, such as, motility, xanthan biosynthesis and export as well as virulence. A PCD negative mutant Xag M42 displayed diminished virulence and a contrasting transcriptome pattern. In vitro experiments revealed that under PCD inducing condition, Xag produced negligible xanthan gum as well as extracellular amylase, displayed enhanced swarming motility, released copious e-DNA and formed scanty biofilm. Lack of 'diffusible signalling factor' production was eliminated as possible reason for PCD-induction. Altogether, it appears that, in planta existence of the pathogen metabolically resembles PNIM, and on being transferred to PIM, the cells experience oxidative stress and circumvents it by adopting PCD as an altruistic response. Survival of the remaining population is encouraged by upregulating motility, detachment from the fragile biofilm to achieve dispersal.


Assuntos
Fabaceae , Xanthomonas axonopodis , Xanthomonas , Xanthomonas axonopodis/genética , Virulência/genética , Glicina/genética , Glicina/metabolismo , Biofilmes , Apoptose , Expressão Gênica , Doenças das Plantas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Plant Physiol ; 193(3): 2232-2247, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37534747

RESUMO

Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.


Assuntos
Manihot , Xanthomonas axonopodis , Xanthomonas axonopodis/metabolismo , Manihot/genética , Manihot/metabolismo , Manihot/microbiologia , Histonas/metabolismo , Resistência à Doença/genética , Acetilação , Doenças das Plantas/microbiologia
7.
Pest Manag Sci ; 79(10): 4083-4093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291956

RESUMO

BACKGROUND: p-Aminobenzoic acid (pABA) is an environmentally friendly bioactive metabolite synthesized by Lysobacter antibioticus. This compound showed an unusual antifungal mode of action based on cytokinesis inhibition. However, the potential antibacterial properties of pABA remain unexplored. RESULTS: In this study, pABA showed antibacterial activity against Gram-negative bacteria. This metabolite inhibited growth (EC50 = 4.02 mM), and reduced swimming motility, extracellular protease activity, and biofilm formation in the soybean pathogen Xanthomonas axonopodis pv. glycines (Xag). Although pABA was previously reported to inhibit fungal cell division, no apparent effect was observed on Xag cell division genes. Instead, pABA reduced the expression of various membrane integrity-related genes, such as cirA, czcA, czcB, emrE, and tolC. Consistently, scanning electron microscopy observations revealed that pABA caused major alternations in Xag morphology and blocked the formation of bacterial consortiums. In addition, pABA reduced the content and profile of outer membrane proteins and lipopolysaccharides in Xag, which may explain the observed effects. Preventive and curative applications of 10 mM pABA reduced Xag symptoms in soybean plants by 52.1% and 75.2%, respectively. CONCLUSIONS: The antibacterial properties of pABA were studied for the first time, revealing new insights into its potential application for the management of bacterial pathogens. Although pABA was previously reported to show an antifungal mode of action based on cytokinesis inhibition, this compound inhibited Xag growth by altering the outer membrane's integrity. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Xanthomonas axonopodis , Xanthomonas , /microbiologia , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo , Ácido 4-Aminobenzoico/farmacologia , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Glicina/metabolismo , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Xanthomonas/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233251

RESUMO

Xanthomonas axonopodis pv. citri (Xac) belongs to the Gram-negative species, causing citrus canker that seriously affects the fruit yield and quality of many rutaceae plants. Herein, we found that compound 2-(butyldisulfanyl) quinazolin-4(3H)-one exhibited remarkable anti-Xac activity in vitro with a half effective concentration (EC50) of 2.6 µg/mL, while the positive controls thiodiazole-copper with 57 µg/mL and bismerthiazol with 68 µg/mL and this compound showed great anti-citrus canker activity in vivo. This active compound also was confirmed to reduce biofilm formation, increase the level of reactive oxygen species, damage the morphological structure of the bacteria, and cause bacterial death. Proteomics and RT-qPCR analysis results indicated that this compound down-regulated the expression of enzymes in the MEP (2-methyl-D-erythritol 4-phosphate) pathway and might achieve destructive ability of Xac. Overall, this study indicates that such derivatives could be a promising scaffold to develop novel bactericides to control citrus canker.


Assuntos
Citrus , Xanthomonas axonopodis , Xanthomonas , Antibacterianos/farmacologia , Citrus/microbiologia , Cobre , Dissulfetos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio
10.
Pest Manag Sci ; 78(8): 3664-3675, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35611815

RESUMO

BACKGROUND: Xanthomonas axonopodis pv. glycines (Xag) is the causal agent of bacterial pustule disease and results in enormous losses in soybean production. Although isoflavones are known to be involved in soybean resistance against pathogen infection, the effects of exogenous isoflavones on soybean plants remain unexplored. RESULTS: Irrigation of soybean plants with isoflavone genistein inhibited plant growth for short periods, probably by inhibiting the tyrosine (brassinosteroids) kinase pathway, and increased disease resistance against Xag. The number of lesions was reduced by 59%-63% when applying 50 µg ml-1 genistein. The effects on disease resistance were observed for 15 days after treatment. Genistein also enhanced the disease resistance of soybean against the fungal pathogen Sclerotinia sclerotiorum. Exogenous genistein increased antioxidant capacity, decreased H2 O2 level and promoted the accumulation of phenolics in Xag-infected soybean leaves. Exogenous genistein reduced the amounts of endogenous daidzein, genistein and glycitein and increased the concentration of genistin, which was found to show strong antibacterial activity against the pathogen and to reduce the expression of virulence factor yapH, and flagella formation gene flgK. The expression of several soybean defense genes, such as chalcone isomerase, glutathione S-transferase and 1-aminocyclopropane-1-carboxylate oxidase 1, was upregulated after genistein treatment. CONCLUSIONS: The effects of exogenous genistein on soybean plants were examined for the first time, revealing new insights into the roles of isoflavones in soybean defense and demonstrating that irrigation with genistein can be a suitable method to induce disease resistance in soybean plants. © 2022 Society of Chemical Industry.


Assuntos
Fabaceae , Isoflavonas , Xanthomonas axonopodis , Resistência à Doença , Genisteína/metabolismo , Genisteína/farmacologia , Glicina/metabolismo , Isoflavonas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/metabolismo
11.
Plant Cell Rep ; 41(5): 1261-1272, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35275280

RESUMO

KEY MESSAGE: MeRAVs positively regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam. Cassava (Manihot esculenta Crantz) is an important food crop and energy crop, but its yield is seriously affected by cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam). Related to ABI3/VP1 (RAV) transcription factor family belongs to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, which plays an important role in plant growth, development and response to biotic and abiotic stresses. In this study, we found that MeRAVs positively co-regulates the resistance to Xam and stimulates the innate immune response by regulating reactive oxygen species (ROS) burst in cassava. Dual-luciferase assay showed that seven MeRAVs exhibited transcriptional activate activity by binding CAACA motif and CACCTG motif. A large number of differentially expressed genes (DEGs) were identified through RNA-seq analysis of MeRAVs-silenced lines, and the DEGs co-regulated by seven MeRAVs accounted for more than 45% of the total DEGs. In addition, seven MeRAVs positively regulate expression of disease resistance-related genes through directly binding to their promoters. In summary, MeRAVs co-regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam.


Assuntos
Manihot , Xanthomonas axonopodis , Xanthomonas , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xanthomonas axonopodis/fisiologia
12.
J Nanosci Nanotechnol ; 21(6): 3531-3538, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739804

RESUMO

Cotton (Gossypium hirsutum L.), is an important fibre and oilseed crop of the world. India in particular has the largest area under cotton cultivation and around 60% proportion in the raw fibre textile industry is contributed by cotton alone. Cotton is affected by many diseases (bacterial blights, fungal leafspots, mildew) and pests (white flies, bollworms, aphids etc.). The bacterial blight disease caused by Xanthomonas axonopodis pv. malvacearum is considered as one of the most devastating one that cause huge losses in production every year. Due to systemic spread of this bacterial infection, combating this disease is slightly challenging. Spray of toxic chemicals like endosulfan, streptocycline and dimethoate is a common practice in fields but these chemicals are unable to control the disease spread substantially. Nanotechnology is a newly emerging technology that is being extensively exploited in the agriculture sector these days. Past studies have reported the antimicrobial effect of various metallic nanoparticles including zinc oxide nanoparticles which is known to possess antibacterial potential against both gram +ve and gram -ve bacteria. Based upon this, synthesis of ZnO nanoparticles was carried out using Morus alba plant leaf extract and the nanoparticles were characterised in detail using scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis, electron dispersive X-ray spectroscopy study etc. The zinc oxide nanoparticles were found crystalline in nature and the size ranged between 10-50 nanometers. The efficacy of these nanoparticles was checked against Xanthomonas axonopodis pv. malvacearum under in vitro conditions and found to be very effective in controlling the bacterial spread in comparison to streptomycin that was used as control. Our results suggest that ZnO nanoparticles can be used as an effective antibacterial agent to control bacterial blight disease of cotton.


Assuntos
Nanopartículas Metálicas , Xanthomonas axonopodis , Xanthomonas , Óxido de Zinco , Antibacterianos/farmacologia , Bactérias , Gossypium , Doenças das Plantas , Óxido de Zinco/farmacologia
13.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361545

RESUMO

In this study, using the botanical active component thiochromanone as the lead compound, a total of 32 new thiochromanone derivatives containing a carboxamide moiety were designed and synthesized and their in vitro antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicolaby (Xoc), and Xanthomonas axonopodis pv. citri (Xac) were determined, as well as their in vitro antifungal activities against Botryosphaeria dothidea (B. dothidea), Phomopsis sp., and Botrytis cinerea (B. cinerea). Bioassay results demonstrated that some of the target compounds exhibited moderate to good in vitro antibacterial and antifungal activities. In particular, compound 4e revealed excellent in vitro antibacterial activity against Xoo, Xoc, and Xac, and its EC50 values of 15, 19, and 23 µg/mL, respectively, were superior to those of Bismerthiazol and Thiodiazole copper. Meanwhile, compound 3b revealed moderate in vitro antifungal activity against B. dothidea at 50 µg/mL, and the inhibition rate reached 88%, which was even better than that of Pyrimethanil, however, lower than that of Carbendazim. To the best of our knowledge, this is the first report on the antibacterial and antifungal activities of this series of novel thiochromanone derivatives containing a carboxamide moiety.


Assuntos
Botrytis/crescimento & desenvolvimento , Cromanos , Phomopsis/crescimento & desenvolvimento , Xanthomonas axonopodis/crescimento & desenvolvimento , Xanthomonas/crescimento & desenvolvimento , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Cromanos/síntese química , Cromanos/química , Cromanos/farmacologia , Relação Estrutura-Atividade
14.
Arch Microbiol ; 203(7): 4189-4199, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34076737

RESUMO

Bacillus velezensis is widely known for its inherent biosynthetic potential to produce a wide range of bio-macromolecules and secondary metabolites, including polyketides (PKs) and siderophores, as well as ribosomally and non-ribosomally synthesized peptides. In the present study, we aimed to investigate the bio-macromolecules, such as proteins and peptides of Bacillus velezensis strains, namely A6 and P42 by whole-cell sequencing and highlighted the potential application in controlling phytopathogens. The bioactive compounds, specifically secondary metabolites, were characterized by whole-cell protein profiling, Thin-Layer Chromatography, Infra-Red Spectroscopy, Nuclear Magnetic Resonance, Gas Chromatograph and Electro Spray Liquid Chromatography. Gas Chromatography analysis revealed that the A6 and P42 strains exert different functional groups of compounds, such as aromatic ring, aliphatic, alkene, ketone, amine groups and carboxylic acid. Whole-cell protein profiling of A6 and P42 strains of B. velezensis by nano-ESI LC-MS/MS revealed the presence of 945 and 5303 proteins, respectively. The in vitro evaluation of crude extracts (10%) of A6 and P42 significantly inhibited the rice pathogen, Magnaporthe oryzae (MG01), whereas the cell-free culture filtrate (75%) of strain P42 showed 58.97% inhibition. Similarly, in vitro evaluation of crude extract (10%) of P42 strain inhibited bacterial blight of pomegranate pathogen, Xanthomonas axonopodis pv. punicae, which eventually resulted in a higher inhibition zone of 3 cm, whereas the cell-free extract (75%) of the same strain significantly suppressed the growth of the pathogen with an inhibition zone of 1.48 cm. From the results obtained, the crude secondary metabolites and cell-free filtrates (containing bio-macromolecules) of the strains A6 and P42 of B. velezensis can be employed for controlling the bacterial and fungal pathogens of crop plants.


Assuntos
Ascomicetos , Bacillus , Doenças das Plantas , Xanthomonas axonopodis , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Bacillus/química , Cromatografia Líquida , Oryza/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Punica granatum/microbiologia , Espectrometria de Massas em Tandem , Xanthomonas axonopodis/efeitos dos fármacos
15.
Plant Dis ; 105(12): 3925-3931, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34152204

RESUMO

In 2018, a bacterial disease complex composed of bleached spots and soft rot-blight on onion seedlings was observed in nursery beds in Changnyeong, a major onion-producing county in South Korea. Four bacteria isolated from the diseased lesions were identified: Pseudomonas viridiflava, Acidovorax avenae subsp. avenae, Pantoea ananatis, and Xanthomonas axonopodis, respectively. We referred to the four strains as a "bacterial disease complex" because they were isolated from the same sample with multiple symptoms. We examined the synergistic activity among the four strains to understand their relationships and roles. We monitored in vivo bacterial population density and disease progression after artificially inoculating the bacteria on onion seedlings at a temperature of 22 or 28°C. The disease pattern progressed sooner at 28 than at 22°C (by an average of 4 to 6 days). The rate of disease progression induced by inoculation of P. ananatis alone was consistent with that induced by coinoculation of P. ananatis with the other strains, regardless of the temperature (22 or 28°C). The in vivo growth of P. ananatis on onion seedlings was not different after inoculation alone versus together with the other strains. The rate of disease progression induced by P. viridiflava was similar when inoculated alone and when inoculated with other tree strains at 28°C, but disease progression induced by inoculation alone was slower at 22°C. The in vivo growth of P. viridiflava or X. axonopodis on onion seedlings decreased rapidly or gradually, respectively, when inoculated with the other strains. Coinfection with the other three strains had repression effects on the growth of P. viridiflava, a slight effect on X. axonopodis, and no effect on P. or A. avenae subsp. avenae in vivo. These results indicate that the strains coexist or interact antagonistically, rather than synergistically, depending on the conditions. These results were consistent with the results of the in vitro growth inhibition assay, in which P. viridiflava growth was inhibited by X. axonopodis or P. ananatis. These results also confirmed that X. axonopodis is present on bleached spots and P. viridiflava on soft rot-blight lesions, and that P. viridiflava and P. ananatis cause soft rot-blight but do not coexist. A. avenae subsp. avenae is a minor causative pathogen of bleached spots on onion seedlings, but it is not significantly affected by temperature and has no antagonistic or synergistic interactions with X. axonopodis.


Assuntos
Infecções Bacterianas , Xanthomonas axonopodis , Cebolas , Doenças das Plantas , Plântula
16.
Plant J ; 107(3): 925-937, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34037995

RESUMO

Heat shock protein 90 (HSP90) is involved in plant growth and various stress responses via regulating protein homeostasis. Autophagy keeps cellular homeostasis by recycling the components of cellular cytoplasmic constituents. Although they have similar effects on cellular protein homeostasis, the direct association between HSP90 and autophagy signaling remains unclear in plants, especially in tropical crops. In this study, the correlation between HSP90 and autophagy signaling was systematically analyzed by protein-protein interaction in cassava, one of the most important economy fruit in tropic. In addition, their effects on plant disease response and underlying mechanisms in cassava were investigated by functional genomics and genetic phenotype assay. The potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex interacts with MeATGs and subsequently triggers autophagy signaling, conferring improved disease resistance to cassava bacterial blight (CBB). On the contrary, HSP90 inhibitor and autophagy inhibitor decreased disease resistance against CBB in cassava, and autophagy may be involved in the potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex-mediated multiple immune responses. This study highlights the precise modulation of autophagy signaling by potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex in autophagy-mediated disease resistance to CBB.


Assuntos
Autofagia/genética , Proteínas de Choque Térmico HSP90/metabolismo , Manihot/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Proteínas de Choque Térmico HSP90/genética , Manihot/metabolismo , Chaperonas Moleculares , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , /metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xanthomonas axonopodis
17.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33855431

RESUMO

Research on a few model plant-pathogen systems has benefitted from years of tool and resource development. This is not the case for the vast majority of economically and nutritionally important plants, creating a crop improvement bottleneck. Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Xam), is an important disease in all regions where cassava (Manihot esculenta Crantz) is grown. Here, we describe the development of cassava that can be used to visualize one of the initial steps of CBB infection in vivo. Using CRISPR-mediated homology-directed repair (HDR), we generated plants containing scarless insertion of GFP at the 3' end of CBB susceptibility (S) gene MeSWEET10a. Activation of MeSWEET10a-GFP by the transcription activator-like (TAL) effector TAL20 was subsequently visualized at transcriptional and translational levels. To our knowledge, this is the first such demonstration of HDR via gene editing in cassava.


Assuntos
Manihot , Xanthomonas axonopodis , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Manihot/genética , Doenças das Plantas/genética , Xanthomonas axonopodis/genética
18.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578946

RESUMO

Euphorbia tirucalli is a medicine plant possessing many bioactive properties. This paper focused on phytochemical screening (alkaloid, flavonoid, saponin, tannin, and anthraquinone), quantification of polyphenol and flavonoids, and activating evaluation of antioxidants and antimicrobial properties against Xanthomonas axonopodis of different extracts from Euphorbia tirucalli grown in Binh Thuan, Vietnam. The best activity fraction was used for purification and determining bioactive ingredients. The results showed that the phytochemical study revealed the presence of alkaloids, flavonoids, tannins, and terpenoids in the ethyl acetate fraction. Saponin and anthraquinone did not present in all extracts. The content of polyphenol and flavonoid of Euphorbia tirucalli stem was in the range of 16.65-106.32 mg EqAG/g and 97.97-450.83 µg QE/g. The ethyl acetate fraction showed higher amounts of polyphenol and flavonoids and antimicrobial activity against X. axonopodis than other fractions. The antioxidant (SC50) activity of Euphorbia tirucalli stem was in the range of 12.91 ± 0.70 and 528.33 ± 25.15 µg/mL. At concentrations of 5.0 and 7.5 mg/mL, the diameter of inhibition of the ethyl acetate fraction was 14.33 ± 0.76 mm and 17.87 ± 0.57 mm, respectively. The MIC (minimum inhibitory concentration) was 0.156 mg/mL. Scopoletin, gallic acid, and piperic acid got MICs corresponding to 78, 312, and 312 µg/mL, respectively. Scopoletin, gallic acid, and piperic acid were found in the ethyl acetate fraction of Euphorbia tirucalli and exhibited the treatment of citrus bacteria canker and plant diseases.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Euphorbia/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Xanthomonas axonopodis/efeitos dos fármacos , Vietnã
19.
Plant Biotechnol J ; 19(4): 785-800, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128298

RESUMO

Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Nitrate reductase (NR) plays an important role in plant nitrogen metabolism in plants. However, the in vivo role of NR and the corresponding signalling pathway remain unclear in cassava. In this study, we isolated MeNR1/2 and revealed their novel upstream transcription factor MeRAV5. We also identified MeCatalase1 (MeCAT1) as the interacting protein of MeRAV5. In addition, we investigated the role of MeCatalase1 and MeRAV5-MeNR1/2 module in cassava defence response. MeNRs positively regulates cassava disease resistance against CBB through modulation of nitric oxide (NO) and extensive transcriptional reprogramming especially in mitogen-activated protein kinase (MAPK) signalling. Notably, MeRAV5 positively regulates cassava disease resistance through the coordination of NO and hydrogen peroxide (H2 O2 ) level. On the one hand, MeRAV5 directly activates the transcripts of MeNRs and NO level by binding to CAACA motif in the promoters of MeNRs. On the other hand, MeRAV5 interacts with MeCAT1 to inhibit its activity, so as to negatively regulate endogenous H2 O2 level. This study highlights the precise coordination of NR activity and CAT activity by MeRAV5 through directly activating MeNRs and interacting with MeCAT1 in plant immunity.


Assuntos
Manihot , Xanthomonas axonopodis , Catalase , Resistência à Doença/genética , Manihot/genética , Nitrato Redutases , Doenças das Plantas
20.
Plant Biotechnol J ; 19(4): 689-701, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33095967

RESUMO

Cassava is one of the most important staple food crops in tropical regions. To date, an understanding of the relationship between microbial communities and disease resistance in cassava has remained elusive. In order to explore the relationship among microbiome and phenotypes for further targeted design of microbial community, 16S rRNA and ITS of microbiome of ten cassava varieties were analysed, and a distinctive microbial community in the rhizosphere showed significant interdependence with disease resistance. Shotgun metagenome sequencing was performed to elucidate the structure of microbiomes of cassava rhizosphere. Comprehensive microbiome studies were performed to assess the correlation between the rhizosphere microbiome and disease resistance. Subsequently, the metagenome of rhizosphere microbiome was annotated to obtain taxonomic information at species level and identify metabolic pathways that were significantly associated with cassava disease resistance. Notably, cassava disease resistance was significantly associated with Lactococcus sp., which specifically produces nisin. To definitively explain the role of nisin and underlying mechanism, analysis of nisin biosynthesis-associated genes together with in vitro and in vivo experiments highlighted the effect of nisin on inhibiting the growth of Xanthomonas axonopodis pv. manihotis (Xam) and activating immune response in cassava. The new insights between cassava rhizosphere microbiome especially Lactococcus sp. and disease resistance provide valuable information into further control of cassava disease.


Assuntos
Manihot , Microbiota , Xanthomonas axonopodis , Resistência à Doença/genética , Humanos , Manihot/genética , Doenças das Plantas , RNA Ribossômico 16S/genética , Rizosfera , Xanthomonas axonopodis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...